варианты проверочной 11 класс-аккуратная

1. Для приготовления маринада для огурцов на 1 литр воды требуется 12 г лимонной кислоты. Лимонная кислота продается в пакетиках по 10 г. Какое наименьшее число пачек нужно купить хозяйке для приготовления 6 литров маринада?

2. Больному прописано лекарство, которое нужно пить по 0,5 г 3 раза в день в течение 21 дня. В одной упаковке 10 таблеток лекарства по 0,5 г. Какого наименьшего количества упаковок хватит на весь курс лечения?

3. На диаграмме показано распределение выплавки меди в 10 странах мира (в тысячах тонн) за 2006 год. Среди представленных стран первое место по выплавке меди занимали США, десятое место — Казахстан. Какое место занимала Индонезия?

 

4. Независимое агентство каждый месяц определяет рейтинги R новостных сайтов на основе показателей информативности In, оперативности Opи объективности Tr публикаций. Каждый отдельный показатель оценивается целыми числами от −2 до 2. Итоговый рейтинг вычисляется по формуле

 В таблице даны оценки каждого показателя для нескольких новостных сайтов. Определите наивысший рейтинг новостных сайтов, представленных в таблице. Запишите его в ответ, округлив до целого числа.

 Сайт

Информативность

Оперативность

Объективность

VoKak.ru

2

−1

0

NashiNovosti.com

−2

1

−1

Bezvrak.ru

2

2

0

net

−1

−1

−2

5. Диагонали ромба пересекаются в точке и равны 12 и 16. Найдите длину вектора AO+BO

6. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

7. Найдите корень уравнения log5(5-x)=log53

8. В треугольнике ABC угол C равен 9 0°, AC=8,tgA=0,5.. Найдите BC.

9. На рисунке изображен график производной функции f(x), определенной на интервале (−2; 12). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.

10. Конус вписан в цилиндр. Объем конуса равен 5. Найдите объем цилиндра.

11.Найдите значение выражения при .

12. Расстояние (в км) от наблюдателя, находящегося на небольшой высоте h километров над землeй, до наблюдаемой им линии горизонта вычисляется по формуле , где R=6400 км  — радиус Земли. С какой высоты горизонт виден на расстоянии 4 километра? Ответ выразите в километрах.

13. Объем треугольной пирамиды равен 15. Плоскость проходит через сторону основания этой пирамиды и пересекает противоположное боковое ребро в точке, делящей его в отношении 1 : 2, считая от вершины пирамиды. Найдите больший из объемов пирамид, на которые плоскость разбивает исходную пирамиду.

14. Из одной точки круговой трассы, длина которой равна 44 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 112 км/ч, и через 48 минут после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.

15. Найдите наибольшее значение функции на отрезке .

1. Аня купила проездной билет на месяц и сделала за месяц 41 поездку. Сколько рублей она сэкономила, если проездной билет стоит 580 рублей, а разовая поездка — 20 рублей?

 

2. Среди 40 000 жителей города 60% не интересуется футболом. Среди футбольных болельщиков 80% смотрело по телевизору финал Лиги чемпионов. Сколько жителей города смотрело этот матч по телевизору?



3. На рисунке изображен график осадков в Калининграде с 4 по 10 февраля 1974 г. На оси абсцисс откладываются дни, на оси ординат — осадки в мм. Определите по рисунку, сколько дней из данного периода выпадало от 2 до 8 мм осадков.

4.В первом банке один фунт стерлингов можно купить за 47,4 рубля. Во втором банке 30 фунтов — за 1446 рублей. В третьем банке 12 фунтов стоят 561 рубль. Какую наименьшую сумму (в рублях) придется заплатить за 10 фунтов стерлингов?

5. Боковая сторона равнобедренного треугольника равна 10. Из точки, взятой на основании этого треугольника, проведены две прямые, параллельные боковым сторонам. Найдите периметр получившегося параллелограмма.

6. В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.

7. Найдите корень уравнения:

8. В треугольнике угол равен 90°, – высота, , . Найдите .

9.Материальная точка движется прямолинейно по закону (где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). Найдите ее скорость (в м/с) в момент времени t = 3 с.

10. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

11. Найдите , если и .

12. Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой 749 МГц. Скорость спуска батискафа, выражаемая в м/с, определяется по формуле , где м/с – скорость звука в воде, – частота испускаемых импульсов (в МГц), – частота отражeнного от дна сигнала, регистрируемая приeмником (в МГц). Определите наибольшую возможную частоту отраженного сигнала , если скорость погружения батискафа не должна превышать 2 м/с.

МГц.

13. Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите .

14. Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути – со скоростью, на 16 км/ч большей скорости первого, в результате чего прибыл в пункт B одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.

15. Найдите наименьшее значение функции .