Хими́я 1 курс

Хими́ческое соедине́ние — сложное вещество, состоящее из химически связанных атомов двух или более элементов (гетероядерные молекулы)

Основными классами неорганических соединений являются оксиды, кислоты, соли и основания.

Оксиды представляют собой соединения элементов с кислородом. Оксиды подразделяют на солеобразующие и несолеобразующие. Солеобразующие оксиды делят на основные (образуют соли с кислотами), кислотные (образуют соли с основаниями) и амфотерные (образуют соли как с кислотами, так и с основаниями). Основным оксидам отвечают основания, кислотным – кислоты, а амфотерным – гидраты, которые проявляют как кислотные, так и амфотерные свойства.

Гидроксиды (основания) классифицируют по их силе (сильные – все щелочи кроме NH4OH и слабые), а также по растворимости в воде (растворимые – щелочи и нерастворимые). Важнейшими щелочами являются КОН (едкое кали) и NaOH (едкий натр).

В состав кислот входит водород, способный замещаться металлом, а также кислотный остаток. Кислоты классифицируют по их силе (H2SO4, HNO3 – сильные кислоты; HCN – слабая кислота), на кислородсодержащие (H2SO4, HNO3) и бескислородные (HCN, HI); а также по основности (х) — HCN – одноосновная кислота, H2SO3 – двухосновная кислота, H3РO4 – трехосновная кислота. Важнейшим свойством кислот является их способность образовывать соли с основаниями.

Соли являются продуктом замещения водорода в кислоте на металл или гидроксогрупп в основании на кислотный остаток. Нормальные (средние) соли получаются при полном замещении; кислые – при неполном замещении водорода кислоты на металл; основные – при неполном замещении гидроксогрупп основания на кислотный остаток. Кислая соль может быть образована только кислотой, основность которой 2 и более, а основная – металлом, заряд которого 2 и более.

Молекула — наименьшая частица вещества, обладающая его химическими свойствами.

Атом — наименьшая частица химического элемента, сохраняющая все его химические свойства

Химический элемент — это вид атомов, характеризующийся определенными зарядами ядер и строением электронных оболочек. В настоящее время известно 110 элементов: 89 из них найдены в природе (на Земле), остальные получены искусственным путем.

Ио́н — одноатомная или многоатомная электрически заряженная частица, образующаяся в результате потери или присоединения атомом или молекулой одного или нескольких электронов.

Средняя абсолютная масса атома (m) равна относительной атомной массе, умноженной на а.е.м.

Ar(Mg) = 24,312

m (Mg) = 24,312 • 1,66057 • 10-24 = 4,037 • 10-23 г

Относительная молекулярная масса (Mr) — безразмерная величина, показывающая, во сколько раз масса молекулы данного вещества больше 1/12 массы атома углерода 12C

Международная единица атомных масс равна 1/12 массы изотопа 12C — основного изотопа природного углерода. 1 а.е.м = 1/12 • m (12C) = 1,66057 • 10-24 г

Моль — это такое количество вещества, в котором содержится определенное число частиц (молекул, атомов, ионов), равное постоянной Авогадро (NA= 6,02Ч1023 моль-1).

Молярная масса вещества (M) – масса одного моля этого вещества.

Эквивалент – это реальная или условная частица, которая в кислотно-основных реакциях присоединяет (или отдает) один ион Н+ или ОН–, в окислительно-восстановительных реакциях принимает (или отдает) один электрон, реагирует с одним атомом водорода или с одним эквивалентом другого вещества.

Закон сохранения массы гласит: Масса веществ, вступающих в реакцию, равна массе веществ, образующихся в результате реакции.

Впервые закон сохранения массы сформулировал русский ученый Ломоносов, в 1748 годуЗакон постоянства состава (Ж.Л. Пруст, 1801—1808гг.) — любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов, причем отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами.

Закон кратных отношений — Если один и тот же элемент образует несколько соединений с другим элементом, то на одну и ту же массовую часть первого элемента будут приходиться такие массовые части второго, которые относятся друг к другу как небольшие целые числа.

Закон Авога́дро — «в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул».

Закон эквивалентов— все вещества реагируют друг с другом и образуют новые вещества в соотношениях строго пропорциональных их химическим эквивалентам.

Эквивалентом сложного вещества называется реальная или условная частица этого вещества, которая взаимодействует без остатка с одним эквивалентом водорода или с одним эквивалентом любого другого вещества.

Эквивалентом простого вещества, вступающего в какую-либо реакцию, называют такое его количество (в молях атомов или чаще в граммах), которое приходится на единицу валентности соответствующего элемента при образовании им соединения.

Эквивалентом элемента называется такое его весовое количество, которое соединяется или вытесняет из соединений 1 весовую часть водорода или 8 весовых частей кислорода

Модель Резерфорда. Суть планетарной модели строения атома можно свести к следующим утверждениям:

1. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.

2. Весь положительный заряд и почти вся масса атома сосредоточены в его ядре (масса электрона равна 1/1823 а.е.м.).

3. Вокруг ядра вращаются электроны. Их число равно положительному заряду ядра.

1. Электрон может вращаться вокруг ядра не по произвольным, а только по строго определенным (стационарным) круговым орбитам.

Радиус орбиты r и скорость электрона v связаны квантовым соотношением Бора:

mrv = nћ

где m — масса электрона, n — номер орбиты, ћ — постоянная Планка (ћ = 1,05∙10-34 Дж∙с).

2. При движении по стационарным орбитам электрон не излучает и не поглощает энергии.

Таким образом, Бор предположил, что электрон в атоме не подчиняется законам классической физики. Согласно Бору, излучение или поглощение энергии определяется переходом из одного состояния, например с энергией Е1, в другое — с энергией Е2, что соответствует переходу электрона с одной стационарной орбиты на другую. При таком переходе излучается или поглощается энергия ∆E, величина которой определяется соотношением

Квантовые числа — энергетические параметры, определяющие состояние электрона и тип атомной орбитали, на которой он находится.

Главное квaнтовое число n определяет общую энергию электрона и степень его удаления от ядра (номер энергетического уровня); оно принимает любые целочисленные значения, начиная с 1 (n = 1, 2, 3, . . .)

Орбитальное (побочное или азимутальное) квантовое число l определяет форму атомной орбитали. Оно может принимать целочисленные значения от 0 до n-1 (l = 0, 1, 2, 3,…, n-1). Каждому значению l соответствует орбиталь особой формы. Орбитали с l = 0 называются s-орбиталями,

l = 1 – р-орбиталями (3 типа, отличающихся магнитным квантовым числом m),

l = 2 – d-орбиталями (5 типов),

l = 3 – f-орбиталями (7 типов).

Магнитное квантовое число m определяет ориентацию орбитали в пространстве относительно внешнего магнитного или электрического поля. Его значения изменяются от +l до -l, включая 0. Например, при l = 1 число m принимает 3 значения: +1, 0, -1, поэтому существуют 3 типа р-АО: рx, рy, рz.

Спиновое квантовое число s может принимать лишь два возможных значения +1/2 и -1/2. Они соответствуют двум возможным и противоположным друг другу направлениям собственного магнитного момента электрона, называемого спином

Энергетический уровень — собственные значения энергии квантовых систем, то есть систем, состоящих из микрочастиц (электронов, протонов и других элементарных частиц) и подчиняющихся законам квантовой механики. Каждый уровень характеризуется определённым состоянием системы, или подмножеством таковых в случае вырождения.

Электронная оболочка атома — область пространства вероятного местонахождения электронов, характеризующихся одинаковым значением главного квантового числа n и, как следствие, располагающихся на близких энергетических уровнях. Число электронов в каждой электронной оболочке не превышает определенного максимального значения.

Принцип Паули (или принцип запрета): на каждом энергетическом уровне атома в данном состоянии может находиться только один электрон, при этом чем выше уровень электрона, тем большая энергия ему соответствует. Каждому значению энергии соответствует своя орбита электрона вокруг ядра.

Правило Клечковского – электроны в атоме заполняются последовательно по подуровням по мере увеличения суммы главного и орбитального квантовых чисел, если эта сумма одинакова, то заполнение идет в сторону увеличения главного квантового числа.

1S < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d » 4f < 6p < 7s.

Правило Хунда? – заполнение электронов в атоме, а также его атом наиболее стабильное состояние, а также минимум потенциальной энергии электронов в атоме соответсвует максимальному спину.

Правило квантования по Бору: из всех орбит электрона возможны только те, для которых момент импульса равен кратному постоянной Планка.

Главное (радиальное) квантовое число — целое число, обозначающее номер энергетического уровня. Характеризует энергию электронов, занимающих данный энергетический уровень. Главное квантовое число обозначается как n. При увеличении главного квантового числа возрастают радиус орбиты и энергия электрона. Главное квантовое число равно номеру периода элемента.

Орбитальное квантовое число ℓ. Орбитальное квантовое число определяет момент импульса электрона, точное значение его энергии и форму орбиталей. Орбитальное квантовое число зависит от главного квантового числа и принимает следующие значения: ℓ = 0, 1, … ,(n – 1), причем каждому значению главного квантового числа n соответствует n значений орбитального квантового числа ℓ. Например, если n = 1, то ℓ принимает только одно значение (ℓ = 0), при n = 2 величина ℓ принимает два значения: 0 и 1 и т. д. Каждому численному значению ℓ соответствует определенная геометрическая форма орбиталей и приписывается буквенное обозначение.

l = 1 – р-орбиталями (3 типа, отличающихся магнитным квантовым числом m), l = 2 – d-орбиталями (5 типов),

l = 3 – f-орбиталями (7 типов).

Если атом находится во внешнем магнитном поле, то, согласно квантовомеханическим представлениям, его электроны должны расположиться так, чтобы проекции их магнитных моментов на направление этого поля были целочисленными. При этом они могут принимать как отрицательные, так и положительные значения, включая нулевое. Численное значение проекции магнитного момента и является магнитным квантовым числом. Если значение орбитального квантового числа равно ℓ, то магнитное квантовое число будет принимать значения от –ℓ до +ℓ, включая ноль. Общее количество значений будет равно 2ℓ + 1. Физический смысл магнитного квантового числа заключается в следующем. В спектрах атомов, помещенных во внешнее магнитное поле, обнаруживается дополнительное расщепление спектральных линий. Возникновение новых близколежащих линий свидетельствует о том, что в магнитном поле энергия электронов изменяется. Но это возможно только в случае различной взаимной ориентации электронных облаков.

Два электрона вращаются в различных направлениях (например, по часовой стрелке и против). Это вращение сообщает электрону магнитный и механический моменты, что характеризуется величиной, получившей название «спин». Спин электрона может принимать два противоположных значения, поэтому вводится спиновое квантовое число. Спиновое квантовое число принимает только два значения: S = + и S = -.Электроны с положительным или отрицательным спинами обозначаются стрелками, направленными соответственно вверх или вниз и помещаемыми в квадрат, изображающий орбиталь. Так, символ Н1 обозначает основное состояние электрона атома водорода, находящегося на первом энергетическом уровне n = 1 в s-состоянии (ℓ= 0) и имеющего спин S = +.

Энергия ионизации (мера проявления металлических свойств) — это энергия, необходимая для отрыва электрона от атома. С увеличением радиуса атома энергия ионизации уменьшается. Этим объясняется уменьшение металлических свойств в периодах слева направо и увеличение металлических свойств в группах сверху вниз. Цезий (Cs) — самый активный металл.

Энергия сродства к электрону (мера проявления неметаллических свойств) — энергия, которая выделяется в результате присоединения электрона к атому. С увеличением числа электронов на внешнем электронном слое энергия сродства к электрону увеличивается, а с увеличением радиуса атома — уменьшается. Этим объясняются увеличение неметаллических свойств в периодах слева направо и уменьшение неметаллических свойств в главных подгруппах сверху вниз.

Размер атома определяется радиусом наиболее удаленной от ядра электронной орбиты. Он имеет величину порядка 0.1 нанометра (нм), или 10-10 м. Приближенно его можно вычислить, используя атомную массу. -В группе сверху вниз увеличивается радиус атомов. Радиусы атомов слева на право уменьшаются в периодах.

Электpоoтрицательность χ (греч. хи) — способность атома удерживать внешние (валентные) электроны. Она определяется степенью притяжения этих электронов к положительно заряженному ядру. Элeктроотрицательность элементов подчиняется периодическому закону: она растет слева направо в периодах и снизу вверх в главных подгруппах Периодической системы элементов Д.И. Менделеева.

принцип Паули часто формулируется так: В атоме не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковы. Зная принцип Паули, посмотрим, сколько же электронов в атоме может находиться на определенной «орбите» с главным квантовым числом n. Первой «орбите» соответствует n = 1. Тогда l = 0, ml=0 и ms может иметь произвольные значения: +1/2 или -1/2 . Мы видим, что если n = 1, таких электронов может быть только два.

Рассмотрим, например, атом гелия. В атоме гелия 2He квантовые числа n = 1, l = 0 и ml = 0 одинаковы для обоих его электронов, а квантовое число ms отличается. Проекции спина электронов гелия могут быть ms = +1/2 или ms = -1/2 . Строение электронной оболочки атома гелия 2Не можно представить как 1s2 или, что то же самое

Заметим, что в одной квантовой ячейке согласно принципу Паули никогда не может быть двух электронов с параллельными спинами.

Третий электрон лития согласно принципу Паули уже не может находиться в состоянии 1s, а только в состоянии 2s:

При данном значении l (т.е. в пределах определенного подуровня) электроны располагаются таким образом, чтобы суммарный спин был максимальным.

Если, например, в трех p-ячейках атома азота необходимо распределить три электрона, то они будут располагаться каждый в отдельной ячейке, т.е. размещаться на трех разных p-орбиталях:

В этом случае суммарный спин равен 3/2 , поскольку его проекция равна ms = +1/2-1/2+1/2=1/2 . Эти же три электрона не могут быть расположены таким образом:

потому что тогда проекция суммарного спина ms = +1/2-1/2+1/2=1/2 . По этой же причине именно так, как приведено выше, расположены электроны в атомах углерода, азота и кислорода.

Уравне́ние Шрёдингера — уравнение, описывающее изменение в пространстве (в общем случае, в конфигурационном пространств е) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.

Волнова́я фу́нкция, или пси-функция — комплекснозначная функция, используемая в квантовой механике для описания чистого состояния системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному)

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке конфигурационного пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.

11)

12) Атом состоит из атомного ядра и электронной оболочки.

Ядро атома состоит из протонов (p+) и нейтронов (n0). Число протонов N(p+) равно заряду ядра (Z) и порядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов).

Сумма числа нейтронов N(n0), обозначаемого просто буквой N, и числа протонов Z называется массовым числом и обозначается буквой А.

A = Z + N

Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е-).

Число электронов N(e-) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

Масса протона примерно равна массе нейтрона и в 1840 раз больше массы электрона, поэтому масса атома практически равна массе ядра.

Форма атома — сферическая. Радиус ядра примерно в 100000 раз меньше радиуса атома.

Периодический закон был сформулирован Д. И. Менделеевым в следующем виде (1871): «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса» . В настоящее время Периодический закон Д. И. Менделеева имеет следующую формулировку: «свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов».

Особенность Периодического закона среди других фундаментальных законов заключается в том, что он не имеет выражения в виде математического уравнения. Графическим (табличным) выражением закона является разработанная Менделеевым Периодическая система элементов.

Главный принцип построения Периодической системы — выделение в ней периодов (горизонтальных рядов) и групп (вертикальных столбцов) элементов. Современная Периодическая система состоит из 7 периодов (седьмой период должен закончиться 118-м элементом). Короткопериодный вариант Периодической системы содержит 8 групп элементов, каждая из которых условно подразделяется на группу А (главную) и группу Б (побочную). В длиннопериодном варианте Периодической системы — 18 групп, имеющих те же обозначения, что и в короткопериодном. Элементы одной группы имеют одинаковое строение внешних электронных оболочек атомов и проявляют определенное химическое сходство.

13) Валентность атома – это его способность образовывать определенное число химических связей с другими атомами. Валентность определяется как число электронных пар, которыми данный атом связан с другими атомами.

Поскольку в химической связи участвуют только электроны внешних оболочек, такие электроны называют валентными. Единичная (простая) связь возникает, когда атомы делят между собой одну пару валентных электронов.

Сте́пень окисле́ния (окислительное число, формальный заряд) — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций, численная величина электрического заряда, приписываемого атому в молекуле в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов.

14) Химическая связь — это взаимодействие атомов, обуславливающее устойчивость молекулы или кристалла как целого. Химическая связь определяется взаимодействием между заряженными частицами (ядрами и электронами).

Ковалентная связь образуется за счёт общих электронных пар, возникающих в оболочках связываемых атомов.Она может быть образована атомами одного итого же элемента и тогда она неполярная; например, такая ковалентная связь существует в молекулах одноэлементных газов H2, O2, N2, Cl2 и др.

Ковалентная связь может быть образована атомами разных элементов, сходных по химическому характеру, и тогда она полярная; например, такая ковалентная связь существует в молекулах H2O, NF3, CO2. Ковалентная связь образуется между атомами элементов, обладающих электроотрицательным характером.

Ионная связь – частный случай ковалентной, когда образовавшаяся электронная пара полностью принадлежит более электроотрицательному атому, становящемуся анионом.

Металлическая связь возникает в результате частичной делокализации валентных электронов, которые достаточно свободно движутся в решетке металлов, электростатически взаимодействуя с положительно заряженными ионами. Силы связи не локализованы и не направлены, а делокализированные электроны обусловливают высокую тепло- и электропроводность.

Водородная связь. Ее образование обусловленно тем, что в результате сильного смещения электронной пары к электроотрицательному атому атом водорода, обладающий эффективным положительным зарядом, может взаимодействовать с другим электроотрицательным атомом (F, O, N, реже Cl, Br, S). Энергия такого электростатического взаимодействия составляет 20–100 кДж∙моль–1. Водородные связи могут быть внутри- и межмолекулярными. Внутримолекулярная водородная связь образуется, например, в ацетилацетоне и сопровождается замыканием цикла

15) Cвязь между атомами возникает при перекрывании их атомных орбиталей с образованием молекулярных орбиталей (МО). Различают два механизма образования ковалентной связи.

ОБМЕННЫЙ МЕХАНИЗМ — в образовании связи участвуют одноэлектронные атомные орбитали, т.е. каждый из атомов предоставляет в общее пользование по одному электрону:

ДOНОРНО-АКЦЕПТОРНЫЙ МЕХАНИЗМ — образование связи происходит за счет пары электронов атома-донора и вакантной орбитали атома-акцептора

:

Исследования ученых позволили сделать вывод, что химическая связь в молекуле водорода осуществляется путем образования пары электронов с противоположно направленными спинами. Каждый электрон занимает место в квантовых ячейках обоих атомов, т.е. движется в силовом поле, образованном двумя силовыми центрами – ядрами атомов водорода. Это представление о механизме образования химической связи было развито учеными Гейтлером и Лондоном на примере водорода.это было распространено и на более сложные молекулы. Разработанная на этой основе теория образования химической связи получила название метода валентных связей. Метод ВС дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул. Хотя этот метод не оказался универсальным и в ряде случаев не в состоянии правильно описать структуру и свойства молекул – все же он сыграл большую роль в разработке квантово-механической теории химической связи и не потерял своего значение до настоящего времени. В основе метода ВС лежат следующие положения:

— ковалентная связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам.

-ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

16) При образовании ковалентной связи в молекулах органических соединений общая электронная пара заселяет связывающие молекулярные орбитали, имеющие более низкую энергию. В зависимости от формы МО – σ-МО или π-МО – образующиеся связи относят к σ- или p-типу.

σ-Связь – ковалентная связь, образованная при перекрывании s-, p- и гибридных АО вдоль оси, соединяющей ядра связываемых атомов (т.е. при осевом перекрывании АО).

π-Связь – ковалентная связь, возникающая при боковом перекрывании негибридных р-АО. Такое перекрывание происходит вне прямой, соединяющей ядра атомов. π-Связи возникают между атомами, уже соединенными σ-связью (при этом образуются двойные и тройные ковалентные связи). π-Связь слабее σ-связи из-за менее полного перекрывания р-АО.

Различное строение σ- и π-молекулярных орбиталей определяет характерные особенности σ- и π-связей.

σ-Связь прочнее π-связи. Это обусловлено более эффективным осевым перекрыванием АО при образовании σ-МО и нахождением σ-электронов между ядрами.

По σ-связям возможно внутримолекулярное вращение атомов, т.к. форма σ-МО допускает такое вращение без разрыва связи (аним., ~33 Kб). Вращение по двойной (σ + π) связи невозможно без разрыва π-связи!

Электроны на π-МО, находясь вне межъядерного пространства, обладают большей подвижностью по сравнению с σ-электронами. Поэтому поляризуемость π-связи значительно выше, чем σ-связи.

17. Гибридизация орбиталей — гипотетический процесс смешения разных (s, p, d, f) орбиталей центрального атома многоатомной молекулы с возникновением одинаковых орбиталей, эквивалентных по своим характеристикам.

Виды гибридизации

sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуются две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp2-гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуются три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp3-гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28′, что соответствует наименьшей энергии отталкивания электронов. Также sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.Такое состояние характерно для атомов углерода в насыщенных углеводородах и соответственно в алкильных радикалах и их производных.

Гибридизация и геометрия молекул

Представления о гибридизации атомных орбиталей лежат в основе теории отталкивания электронных пар Гиллеспи-Найхолма. Каждому типу гибридизации соответствует строго определённая пространственная ориентация гибридных орбиталей центрального атома, что позволяет её использовать как основу стереохимических представлений в неорганической химии.

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары)[3].

Тип гибридизации

Числогибридных орбиталей

Геометрия

Структура

Примеры

sp

2

Линейная

BeF2, CO2, NO2+

sp2

3

Треугольная

BF3, NO3, CO32-

sp3

4

Тетраэдрическая

CH4, ClO4, SO42-, NH4+

dsp2

4

Плоскоквадратная

Ni(CO)4, [PdCl4]2-

sp3d

5

Гексаэдрическая

PCl5, AsF5

sp3d2

6

Октаэдрическая

SF6, Fe(CN)63-, CoF63-

18.Особые виды химической связи:

Донорно-акцепторный механизм (иначе координационный механизм) — способ образования ковалентной химической связи между двумя атомами или группой атомов, осуществляемый за счет неподеленной парыэлектронов атома-донора и свободной орбитали атома-акцептора. Донорами обычно выступают атомы азотакислородафосфорасеры и др., имеющие неподелённые электронные пары на валентных орбиталях малого размера. Роль акцептора могут выполнять ионизированный атом водорода H+, некоторые p-металлы (напр., алюминий при образовании иона AlH4) и, в особенности, d-элементы, имеющие незаполненные энергетические ячейки в валентном электронном слое.

Делокализованная связь — связь, электронная пара которой рассредоточена между несколькими (более 2) ядрами атомов (подобие металлической связи).Такая делокализация (рассредоточение) электронов характерна для сопряженных π-связей, т.е. кратных связей, чередующихся с одинарными.

Сопряженная система

  Несопряженная система  

CH2=CHCH=CH2

                

CH2=CHСН2CH=CH2

  делокализованные π-связи  

  локализованные π-связи  

Делокализация π-электронов приводит к тому, что в сопряженной системе связи становятся нецелочисленными (дробными), т.е. ни двойными или тройными, ни одинарными. Иначе говоря, связи имеют нецелочисленный ПОРЯДОК. Соответственно, длины делокализованных связей имеют промежуточные значения между длинами одинарных и кратных связей.

Банановая связь-σ — связи между 2 соседними атомами углерода. 

Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать NO или F. Водородные связи могут быть межмолекулярными или внутримолекулярными.

Изучение водородной связи, которая образуется между электроотрицательными атомами, из которых хотя бы один имеет свободную электронную пару. Особенности внутримолекулярной и межмолекулярной водородной связи, анализ ее энергии и органических соединений. Помимо различных гетерополярных и гомеополярных связей, существует еще один особый вид связи, который в последние два десятилетия привлекает все большее внимание химиков. Это так называемая водородная связь. Оказалось, что атом водорода может образовывать связь между двумя электроотрицательными атомами (F, О, N, реже Сl и S). Известны случаи, когда эту связь образует водородный атом, связанный с атомом углерода в соединениях типа НСХ3, где X — электроотрицательный атом или группа (например, в HCN, фторуглеводородах). Хотя в настоящее время природа водородной связи еще до конца не выяснена, однако определённое представление о ней уже можно составить. Например:вода,спирт.

19.  Электроотрицательность элементов

Электpоoтрицательность χ (греч. хи) — способность атома удерживать внешние (валентные) электроны. Она определяется степенью притяжения этих электронов к положительно заряженному ядру.

Это свойство проявляется в химических связях как смещение электронов связи в сторону более электроотрицательного атома.Электpоотрицательность атомов, участвующих в образовании химической связи, – один из главных факторов, который определяет не только ТИП, но и СВОЙСТВА этой связи, и тем самым влияет на характер взаимодействия между атомами при протекании химической реакции.

Элeктроотрицательность элементов подчиняется периодическому закону: она растет слева направо в периодах и снизу вверх в главных подгруппах Периодической системы элементов Д.И. Менделеева. 

АЛГОРИТМ ОПРЕДЕЛЕНИЯ ТИПА ХИМИЧЕСКОЙ СВЯЗИ

Предсказать полярность связи можно на основании значений относительной электроотрицательности атомов элементов. Чем больше разность относительных электроотрицательностей связанных атомов (обозначим ее через ∆X), тем сильнее выражена полярность. Предельно высокое значение   ΔХ в соединении CsF (4,1 — 0,86 = 3,24).

Итак, химическая связь между атомами ионная вплоть до ∆Х≈2, ΔХ = 0 — это связь неполярная ковалентная; в промежуточных случаях — полярная ковалентная.

20. Полярность химических связей — характеристика химической связи, показывающая изменение распределения электронной плотности в пространстве вокруг ядер в сравнении с распределением электронной плотности в образующих данную связь нейтральных атомах. Практически все химические связи, за исключениям связей в двухатомных гомоядерных молекулах — в той или иной степени полярны. Ковалентные связи обычно слабо полярны. Ионные связи — сильно полярны.

Молекулы, которые образованы атомами одного и того же элемента, как правило, будут неполярными, как неполярны и сами связи в них. Так, молекулы Н2, F2, N2 неполярны.

Молекулы, которые образованы атомами разных элементов, могут быть полярными и неполярными. Это зависит от геометрической формы. Если форма симметрична, то молекула неполярна (BeH2, BF3, CH4, CO2, SO3), если асимметрична (из-за наличия неподелённых пар или неспаренных электронов), то молекула полярна (NH3, H2O, SO2, NO2).

При замене одного из боковых атомов в симметричной молекуле на атом другого элемента также происходит искажение геометрической формы и появление полярности, например вхлорпроизводных метана CH3Cl, CH2Cl2 и CHCl3 (молекулы метана CH4 неполярны).

Дипольный момент образуется за счет смещения центров положительного и отрицательного зарядов на некоторую величину l, называемую длиной диполя.

Чем более полярны молекулы, чем значительнее смещены валентные электронные пары к одному из атомов, тем больше  m. И наоборот, если электрическая ассиметрия молекул незначительна, то величина m  невелика  .

21. Термодинамическая система — это некая физическая система, состоящая из большого количества частиц, способная обмениваться с окружающей средой энергией и веществом. Также обычно полагается, что такая система подчиняется статистическим закономерностям. Для термодинамических систем справедливы законы термодинамики.

Классификация

Термодинамические системы подразделяются на однородные по составу (например, газ в сосуде) и неоднородные (вода и пар или смесь газов в сосуде).

Выделяют также изолированные системы, то есть системы, которые не обмениваются с окружающей средой ни энергией, ни веществом, и закрытые системы, которые обмениваются со средой только энергией, но не обмениваются веществом. Если же в системе происходят обменные процессы с окружающей средой, то её называют открытой.

Параметры состояния, термодинамические параметры — физические величины, характеризующие состояние термодинамической системытемпературадавлениеудельный объёмнамагниченностьэлектрическая поляризация и др. Различают экстенсивные параметры состояния, пропорциональные массе системы:

объём,

внутренняя энергия,

энтропия,

энтальпия,

энергия Гиббса,

энергия Гельмгольца (свободная энергия),



Страницы: Первая | 1 | 2 | 3 | ... | Вперед → | Последняя | Весь текст