Реферат Процессы, сочетающие оксихлорирование и расщепление хлор

Реферат

Процессы, сочетающие оксихлорирование и расщепление хлорпроизводных

Содержание

стр.

Введение 3

1. Общая характеристика процессов галогенирования 4

2. Техника безопасности в процессах галогенирования 9

3. Химия и технология процесса 10

Список литературы 12

Введение

Производство органических веществ зародилось очень давно, но первоначально оно базировалось на переработке растительного или животного сырья – выделение ценных веществ (сахар, масла) или их расщепление (мыло, спирт и др.). Органический синтез, т. е. получение более сложных веществ из сравнительно простых, зародился в середине XIX века на основе побочных продуктов коксования каменного угля, содержавших ароматические соединения. Затем, уже в XX веке как источники органического сырья все большую роль стали играть нефть и природный газ, добыча, транспорт и переработка которых более экономичны, чем для каменного угля. На этих трех видах ископаемого сырья главным образом и базируется промышленность органического синтеза. В процессах их физического разделения, термического или каталитического расщепления (коксование, крекинг, пиролиз, риформинг, конверсия) получают пять групп исходных веществ для синтеза многих тысяч других соединений:

1. Парафины (от метана СН4 до углеводородов С15 – С40);

2. Олефины (С2Н4, С3Н6, С4Н8, С5Н10);

3. Ароматические углеводороды (бензол, толуол, ксилолы, нафталин);

4. Ацетилен;

5. Оксид углерода и синтез-газ (смесь СО и Н2).

В своем развитии промышленность органического синтеза разделилась на ряд отраслей (технология красителей, лекарственных веществ, пластических масс, химических волокон и др.), среди которых важное место занимает промышленность основного органического и нефтехимического синтеза. Термин «основной» (или «тяжелый») органический синтез охватывает производство многотонажных продуктов, служащих основой для всей остальной органической технологии. В свою очередь, термин «нефтехимический» синтез появился в связи с преобразованием технологии органических веществ на нефтяное сырье и в обычном смысле слова (исключая получение неорганических веществ и полимеров) охватывает первичную химическую переработку углеводородов нефтяного происхождения. В этом плане он является частью основного органического синтеза, чем и обусловлено их объединенное начало.

1. Общая характеристика процессов галогенирования

1. Галогенпроизводные получают тремя основными путями: замещением, присоединением и расщеплением.

Заместительное (субститутивное) галогенирование состоит в замещении на атомы галогена других атомов или групп. Из них наибольшее значение имеет замещение атомов водорода

RH + CI2 → RCI + HCI

которое может происходить при насыщенных и ненасыщенных атомах углерода или в ароматическом ядре. Способность к замещению сохраняется у различных производных углеводородов.

Замещение одного атома галогена на другой имеет значение для получения фтор-, бром- и йодопроизводных из более доступных хлорорганических соединений:

CCI4 + 2HF → CCI2F2 + 2HCI

RCI + NaBr → RBr + NaCI

Замещение ОН- группы на атом галогена применяют для получения некоторых галогенопроизводных, а также хлорангидридов кислот:

ROH + HCI → RCI + H2O

RCOOH + COCI2 → RCOCI + CO2 + HCI

Присоединительное (аддитивное) галогенирование – присоединение галогенирующих агентов к ненасыщенным соединениям имеет столь же большое практическое значение, как замещение. Свободные галогены способны присоединяться по связям С=С, С≡С и Сарар:

CH2=CH2 + CI2 → CICH2-CH2CI

CH≡CH + 2CI2 → CHCI2-CHCI2

C6H6 + 3CI2 → C6H6CI6

Галогеноводороды присоединяются по двойной и тройной связям (гидрогалогенирование), а олефины вступают также в реакцию хлоргидрирования:

CH2=CH2 + HCI → CH3-CH2CI

CH≡CH + HCI → CH2=CHCI

CH2=CH2 + CI2 + H2O → CH2CI-CH2OH + HCI

Способность к перечисленным реакциям аддитивного галогенирования сохраняется у многих производных ненасыщенных углеводородов.

Особый случай аддитивного хлорирования представляет присоединение хлора по атомам, находящимся в низшем валентном состоянии, например синтез фосгена из оксида углерода и хлора:

CO + CI2 → COCI2

Реакции расщепления хлорпроизводных приобретают все более важное значение. Из них наиболее легко происходит дегидрохлорирование (1), обратное присоединению HCI. Из-за предпочтительности протекания этой реакции другие процессы расщепления наблюдаются только при высокой температуре у перхлорпроизводных. Это – дихлорирование (2), обратное присоединению CI2, и расщепление по углерод-углеродным связям, которое может происходить под действием хлора – хлоролиз (3), или хлоринолиз, или при повышенной температуре – пиролиз (4):

CH2CI-CH2CI EMBED Equation.3 CH2=CHCI + HCI

CCI3-CCI3 EMBED Equation.3 CCI2=CCI2 + CI2

CCI3-CCI3 + CI2 EMBED Equation.3 2CCI4

CCI3-CCI2-CCI3 EMBED Equation.3 CCI4 + CCI2=CCI2

2. Термодинамика реакций галогенирования

Реакции галогенирования сильно различаются энергетическими характеристиками, что предопределяет их существенные особенности. Ниже сопоставлены тепловые эффекты реакций с участием фтора, хлора, брома и йода для идеального газообразного состояния веществ:

EMBED Equation.3

EMBED Equation.3 EMBED Equation.3 EMBED Equation.3

Как видно из приведенных данных, тепловой эффект уменьшается в ряду F2 > CI2 > Br2 > I2, причем особое место занимают реакции фторирования и йодирования. Первые сопровождаются очень большим выделением тепла, превышающим энергию разрыва связей С-С и С-Н. Если не принять особых мер, это приведет к глубокому разложению органического вещества. С другой стороны, йодирование протекает очень небольшим или даже отрицательным тепловым эффектом и, в отличие от реакций с фтором, хлором и бромом, является обратимым. Это наряду с низкой активностью йода как реагента заставляет получать йодопроизводные другими путями. Впрочем, они производятся в малых масштабах и не принадлежат к продуктам основного органического и нефтехимического синтеза.

Тепловые эффекты некоторых реакций с участием галогеноводородов при идеальном газообразном состоянии веществ таковы:

C2H4 + HF → C2H5F ( EMBED Equation.3 )

C2H4 + HCI → C2H5CI ( EMBED Equation.3 )

C2H4 + HBr → C2H5Br ( EMBED Equation.3 )

C2H4 + HI → C2H5I ( EMBED Equation.3 )

C2H5OH EMBED Equation.3 C2H5CI ( EMBED Equation.3 )

Все эти реакции экзотермичны, причем для галогеноводородов различие EMBED Equation.3 меньше, чем для свободных галогенов. Важно, что все реакции с участием галогеноводородов обратимы.

3. Галогенирующие агенты

Наибольшее значение в качестве галогенирующих агентов имеют свободные галогены и безводные галогеноводороды. Их температуры кипения при атмосферном давлении приведены в таблице 1.

Таблица 1

Температура кипения галогенов и галогеноводородов при атмосферном давлении

Наименование

Температура

1

2

F2

— 188,0

CI2

— 34,6

Br2

58,8

HF

19,4

продолжение таблицы 1

1

2

HCI

— 83,7

HBr

— 67,0

Все они растворимы в органических жидкостях (Br2 > CI2 > F2 и HBr > HCI > HF), что весьма важно для проведения жидкофазных процессов галогенирования. Имеют резкий запах, раздражают слизистые оболочки глаз и дыхательных путей, а свободные галогены обладают, кроме того, удушающим действием. Особенно опасны фтор и фторид водорода, способные разъедать кожные покровы и костную ткань.

Хлор получают электролизом водных растворов NaCI (рассолы), когда одновременно образуются водород и электролитическая щелочь:

CI EMBED Equation.3 0,5CI2

H+ EMBED Equation.3 0,5H2

Na+ + HO → NaOH

Получаемый при этом хлор-газ имеет концентрацию ≈ 92 % CI2 и содержит примеси N2, O2 и CO. Их можно отделить путем сжижения хлора, испарение которого дает чистый продукт, часто более предпочтительный для процессов хлорирования.

Хлорид водорода получают высокотемпературным синтезом из водорода и хлора:

H2 + CI2 → 2HCI

Фтор производят электролизом расплава гидродифторида калия KHF2, а безводный фторид водорода – действием серной кислоты на плавиковый шпат:

F EMBED Equation.3 0,5F2

H+ EMBED Equation.3 0,5H2

CaF2 + H2SO4 → CaSO4 + 2HF

Все галогенирующие агенты агрессивны по отношению к материалу аппаратуры, причем их корродирующее действие особенно возрастает в присутствии даже следов влаги. Поэтому в процессах фторирования для изготовления аппаратуры применяют медь или никель, а при хлорировании и бромировании защищают стальной корпус эмалями, свинцом или керамическими материалами, используют также специальные сорта сталей, графит, секло и для изготовления труб – свинец. Для снижения коррозии как галогенирующие, так и органические реагенты нужно подвергать осушке.

2. Техника безопасности в процессах галогенирования

Кроме общих вопросов, связанных с токсичностью и взрывоопасностью исходных веществ (углеводороды, оксид углерода), при галогенировании возникает и ряд специфических условий техники безопасности.

Не только галогенирующие агенты, но и получаемые галогенпроизводные часто обладают повышенной токсичностью. Они влияют на центральную нервную систему, оказывают угнетающее или наркотическое действие (хлороформ, хлораль), раздражают слизистые оболочки глаз и дыхательных путей (бензилхлорид, хлорацетон), а фосген оказывает удушающее действие. Вследствие этого при галогенировании предъявляются повышенные требования к герметичности оборудования и вентиляции цехов. На рабочих местах необходимы средства оказания первой помощи и противогазы.

Свободные галогены подобно кислороду и воздуху могут давать с углеводородами и оксидом углерода взрывоопасные смеси. Процесс их горения в атмосфере галогенов очень экзотермичен и при определенных концентрациях переходит во взрыв. Нижний и верхний пределы взрываемости для смесей низших парафинов и олефинов с хлором лежат в интервале от 5 до 60% (об.) углеводорода. Это предопределяет необходимость принятия специальных мер безопасности при смешении углеводородов с галогенами, особенно при высокотемпературных газовых реакциях. Но взрывоопасность этих производств еще более усиливается тем, что многие галогенопроизводные дают взрывоопасные смеси с воздухом. Так, пределы взрываемости в смесях с воздухом составляют (об.):

CH3CI – 7,6 ÷ 19,0

C2H5CI – 3,8 ÷ 15,4

C2H4CI2 – 6,2 ÷ 16,0

При увеличении числа атомов галогена в молекуле взрывоопасность соединения снижается, а тетрахлорид метана даже применяют для тушения пожаров.

3. Химия и технология процесса

Оксихлорирование и отщепление HCI проводится в разных реакторах. Но при повышении температуры до 400 – 4500С появляется возможность совместить оба процесса и с избытком компенсировать затраты тепла на расщепление. На этом основан один из самых эффективных в настоящее время методов получения три- и тетрахлорэтилена – из 1,2-дихлорэтана или других хлорпроизводных C2:

2CH2CI-CH2CI + CI2 + 1,5O2 → 2CHCI=CCI2 + 3H2O

2CH2CI-CH2CI + 2CI2 + 2O2 → 2CCI2=CCI2 + 4H2O

По сравнению с совмещенным хлорированием и дегидрохлорированием 1,2-дихлорэтана он выгодно отличается минимальным расходом хлора и отсутствием побочного образования HCI. Очевидно, что в этом процессе в зависимости от соотношения хлора и 1,2-дихлорэтана получается смесь хлорэтиленов, причем недостаточно прохлорированные вещества возвращают на реакцию. Процесс можно направить и на совместное получение три- и тетрахлорэтиленов, используя в качестве сырья не только 1,2-дихлорэтан, но и различные отходы хлорпроизводных C2. Процесс осуществляют в реакторе с псевдоожиженным катализатором, снимая избыточное тепло кипящим водным конденсатом и генерируя пар высокого давления. В промышленности имеются установки большой мощности для совместного получения три- и тетрахлорэтиленов данным методом. При использовании тетрахлорэтана вообще отпадает потребность в постороннем хлоре:

CHCI2-CHCI2 + 0,5O2 → CCI2=CCI2 + H2O

С целью еще большего удешевления хлорпроизводных C2 в качестве сырья применяют этан или его смеси с этиленом. Так, представлял интерес процесс «Транскат», в котором реакции проводились в циркулирующем расплаве катализатора оксихлорирования с разделением стадий хлорирования и окисления. Он не получил развития из-за громоздкой системы циркуляции больших масс расплава. Другие методы основаны на комбинировании или совмещении прямого и окислительного хлорирования с отщеплением HCI и с другими реакциями. Так, в одном из реализованных в промышленности процессов (рис. 1) в реакторе 1 совмещены прямое хлорирование этана (или его смесей с этиленом) и отщепление HCI от хлорпроизводных. На установке 2 из продуктов первой стадии выделяют целевые хлоролефины (винилхлорид, винилденхлорид), а остальные вещества, включая этилен, непревращенный этан и HCI, направляют в реактор 3 на оксихлорирование. Здесь получают хлорэтаны, которые отделяют от воздуха и возвращают в реактор 1. Процесс комбинируют с гидрохлорированием винилиденхлорида для производства метилхлороформа и с окислительным хлорированием всех нецелевых хлорорганических веществ в три- и тетрахлорэтилен.

SHAPE \* MERGEFORMAT

Рис. 1 Блок-схема комбинированной переработки этана или его смесей с этиленом

1. Термическое хлорирование и дегидрохлорирование, 2. Ректификация, 3. Окислительное хлорирование, 4. Гидрохлорирование, 5. Окислительное хлорирование и дегидрохлорирование

Таким образом, появление промышленных процессов, совмещенных и комбинированных с расщеплением хлорпроизводных и окислительным хлорированием, оказывает огромное влияние на технологию синтеза наиболее многотонажных хлорорганических продуктов, на экономическую эффективность этих производств и охрану окружающей среды. Ведется усиленная разработка и внедрение этих процессов, которые постепенно вытесняют устаревшие и менее эффективные производства.

Список литературы

1. Габриэлян О. С., Остроумов И. Г. Химия. М., Дрофа, 2008;

2. Чичибабин А. Е. Основные начала органической химии. М., Госхимиздат, 1963. – 922 с.;

3. Лебедев Н. Н. Химия и технология основного органического и нефтехимического синтеза. М., Химия. 1988. – 592 с.;

4. Паушкин Я. М., Адельсон С. В., Вишнякова Т. П. Технология нефтехимического синтеза. М., 1973. – 448 с.;

5. Юкельсон И. И. Технология основного органического синтеза. М., «Химия», 1968.

C2

CI2

1

2

3

Воздух

В атмосферу

CH2=CHCI

Хлорэтаны

CH3CCI3

4

5

CHCI=CCI2

CCI2=CCI2

HCI

CI2 + O2